Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Antonio Quesada, ${ }^{\text {a }} \dagger$ Debbie Cannon, ${ }^{\text {a }}$ Jairo Quiroga, ${ }^{\text {b }}$ Braulio Insuasty, ${ }^{\text {b }}$ Rodrigo Abonia, ${ }^{\text {b }}$ Andrea Albornoz, ${ }^{\text {b }}$ Justo Cobo, ${ }^{\text {c }}$ Manuel Nogueras, ${ }^{c}$ Adolfo Sánchez ${ }^{c}$ and John Nicolson Low ${ }^{\text {d }}$ *
${ }^{\text {a }}$ Department of Electronic Engineering and Physics, University of Dundee, Dundee DD1 4 HN , Scotland, ${ }^{\text {b }}$ Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, ${ }^{\text {c }}$ Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, and ${ }^{\mathbf{d}}$ Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland

+ Antonio Quesada is a visiting researcher from the Departamento de Química, Inorgánica y Orgánica, Universidad de Jaén, Spain.

Correspondence e-mail:
jnlow111@hotmail.com

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.112$
Data-to-parameter ratio $=16.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

6-(1H-1,2,3-Benzotriazol-1-yl)-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinoline

The structure of $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4}$ contains no hydrogen bonds either strong or weak. The only molecular interaction is $\pi-\pi$ stacking between the benzotriazole groups in which the perpendicular distance between the triazole group and the benzene group is 3.695 (1) \AA, with a distance of $3.822(2) \AA$ between their centroids.

Comment

The title compound, (I), was obtained as a by-product in the preparation of tricyclic heterocycles by annelation using benzotriazole as a synthetic auxiliary (Katritzky et al., 1998). Derivatives of the tricyclic system 1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinoline, known as lilolidine (Katayama et al., 1985), i.e. pyroquilone (Bass et al., 1981; Muecke \& Gross, 1986; Nakamura, 1986) and analogues (Bass et al., 1975a,b, 1981) have shown antifungal applications in rice crops.

(I)

Table 1 lists the geometric parameters, while Fig. 1 shows a view of the molecule. The only molecular interaction is $\pi-\pi$ stacking between the benzotriazole groups in which the perpendicular distance between the triazole group at (x, y, z) and the benzene group at $(-x,-y,-z)$ is 3.695 (1) \AA, with a distance of 3.822 (2) \AA between their centroids (Fig. 2). Examination of the structure with PLATON (Spek, 2000) showed that there were no solvent-accessible voids in the crystal lattice.

Experimental

Anhydrous $\mathrm{ZnBr}_{2}(50 \mathrm{mg})$ was added to a mixture of 1-(indolin-1ylmethyl)benzotriazole $(1.99 \mathrm{mmol})$ and dodecyl vinyl ether $(4 \mathrm{mmol})$ in dry tetrahydrofuran $(20 \mathrm{ml})$ and then stirred at room temperature for 3 h . The solvent was removed under vacuum and the residue was separated by column chromatography (gradient: hexane/ ethyl acetate) affording, in addition to the expected compound 6-do-decyloxy-1,2,5,6-tetrahydro- 4 H -pyrrolo $[3,2,1-i j] q u i n o l i n e ~(210 \mathrm{mg})$, the title compound as a by-product (160 mg, m.p. $422-423 \mathrm{~K}$). Compound (I) crystallized directly from the chromatographic

Received 18 January 2001 Accepted 23 January 2001 Online 30 January 2001
solvents (hexane/ethyl acetate 3:2), affording crystals suitable for Xray diffraction.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4}$
$M_{r}=275.35$
Orthorhombic, Pbca
$a=10.7112(3) \AA$
$b=10.8297(3) \AA$
$c=23.6321(5) \AA$
$V=2741.56(12) \AA^{3}$
$Z=8$
$D_{x}=1.334 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 5825
reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Block, red
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

KappaCCD diffractometer
φ and ω scans with κ offsets
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.976, T_{\text {max }}=0.984$
10806 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.112$
$S=1.27$
3083 reflections
190 parameters
3083 independent reflections
2317 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.077$
$\theta_{\text {max }}=27.4^{\circ}$
$h=-13 \rightarrow 13$
$k=-13 \rightarrow 14$
$l=-27 \rightarrow 29$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

C2-N3	$1.4654(17)$	N61-N62	$1.3575(14)$
N3-C10B	$1.3948(16)$	N61-C67A	$1.3652(16)$
N3-C4	$1.4539(16)$	N62-N63	$1.3028(16)$
C6-N61	$1.4598(16)$	N63-C63A	$1.3771(18)$
C10B-N3-C4	$114.42(10)$	N62-N61-C6	$120.10(10)$
C10B-N3-C2	$106.20(10)$	C67A-N61-C6	$130.02(10)$
C4-N3-C2	$119.75(11)$	N63-N62-N61	$109.17(10)$
N62-N61-C67A	$109.75(11)$	N62-N63-C63A	$108.13(10)$

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.95-1.00 Å.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2000); software used to prepare material for publication: SHELXL97 and WordPerfect macro PRPKAPPA (Ferguson, 1999).

X-ray data were collected at the EPSRC, X-ray Crystallographic Service, University of Southampton, using an Enraf-Nonius KappaCCD diffractometer. The authors thank the staff for all their help and advice. We are grateful to the Ministerio de Educación y Cultura for the award of a grant to one of the authors (AQ).

Figure 1
A view of the title molecule with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
The interaction of two molecules in the crystal structure.

References

Bass, R. J., Koch, R. C., Richards, H. C. \& Thorpe, J. E. (1975a). British Patent 1,394,373.
Bass, R. J., Koch, R. C., Richards, H. C. \& Thorpe, J. E. (1975b). US Patent 3,917,838.
Bass, R. J., Koch, R. C., Richards, H. C. \& Thorpe, J. E. (1981). J. Agric. Food Chem. 29, 576-579.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Katayama, H., Nakazawa, Y. \& Funayama, N. (1985). Niigata Yakka Daigaku Kenkyu Hokoku, 5, 1-3.
Katritzky, A. R., Abonia, R., Yang, B., Qi, M. \& Inuasty, B. (1998). Synthesis, pp. 469-474.
Muecke, W. \& Gross, D. (1986). Proc. Br. Crop Prot. Conf. Pests Dis. (2), pp. 469-474.
Nakamura, M. (1986). Jpn Pestic. Inf. 48, 27-30.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods Enzymol. 276, 307-326.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. May 2000 Version. University of Utrecht, The Netherlands.

